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 We start our study of statistical physics with a very simple “toy model” of N spins on a 1D lattice.   
Each spin sits on a lattice site and does not move.  It does not interact with any of its neighbors.  It can 
only interact with an external magnetic field, having an energy U = ±me B, where the - sign applies for an 
“up” spin aligned with the magnetic field, and + applies to “down” spins. 

 Now ask 3 questions about this toy model. 

1)  How many microscopic states are available to this system of N spins?  If we imagine 
constructing this lattice of spins from scratch, one has two possible ways of installing the first 
spin (up or down), two more independent choices for the second spin, etc.   Overall the number 
of ways is the product of all these independent possibilities, namely 2N.  If we turn on a uniform 
magnetic field over the entire spin system, the total energy of all the spins is 𝑈𝑈 = −∑ 𝑚𝑚��⃗ 𝑖𝑖𝑁𝑁

𝑖𝑖=1 ∙ 𝐵𝐵�⃗ .  
Since each spin sees the same magnetic field, this can be written in terms of a macroscopic 
quantity, the total magnetic moment 𝑀𝑀 = ∑ 𝑚𝑚𝑖𝑖

𝑁𝑁
𝑖𝑖=1 , where 𝑚𝑚𝑖𝑖 is the magnetic moment of the ith 

spin, giving 𝑈𝑈 = −𝑀𝑀𝑀𝑀. 
2) A second question now arises: How many macroscopic magnetic moment values M are possible 

for a lattice of N spins?  By starting with all the spins aligned “up” (with M = Nme), and flipping 
one spin at a time, one can show that the total number of moment values is N+1.  Note that if 
we take N = 10, there are 11 possible values of M, but 210 = 1024 microscopic states available to 
the system.  This difference grows rapidly with increasing N, showing that there is a large 
multiplicity of microscopic states corresponding to each macroscopic state. 

3) This leads to a third question: What is the exact multiplicity of each macroscopic state of the 
system?  In other words, how many micro-states of an N-spin lattice correspond to the same 
macroscopic magnetic moment M?  Introduce some new notation: call the number of up spins 
N↑ and the number of down spins N↓.  Define the “spin excess” 2s through N↑ = N/2 + s and N↓ 
= N/s – s, such that N↑ – N↓ = 2s, with N↑ + N↓ = N.  The total magnetic moment can now be 
written as M = N↑me – N↓me = (2s) me, hence M and 2s are basically interchangeable quantities. 
The multiplicity can be calculated by starting with all the spins down, and deciding how many 
ways there are to create N↑ spins in that lattice, without regard to the order in which the spins 

are flipped.  The answer is found to be the “binomial coefficient”  𝑔𝑔(𝑁𝑁,𝑁𝑁↑,𝑁𝑁↓) = 𝑁𝑁!
𝑁𝑁↑! 𝑁𝑁↓!

 , or 

𝑔𝑔(𝑁𝑁, 𝑠𝑠) = 𝑁𝑁!

�𝑁𝑁2 +𝑠𝑠�!�𝑁𝑁2−𝑠𝑠�!
. 

 

The multiplicity function should count the total number of states properly.  In other words, we 

expect the multiplicity function to satisfy 2𝑁𝑁 = ∑ 𝑔𝑔(𝑁𝑁, 𝑠𝑠)𝑁𝑁/2
𝑠𝑠=−𝑁𝑁/2 .  This is found to be the case, using the 

binomial expansion for the quantity (𝑥𝑥 + 𝑦𝑦)𝑁𝑁 , and setting 𝑥𝑥 = 𝑦𝑦 = 1. 

The multiplicity function is well approximated by a continuous Gaussian distribution function in the 
limit N>>1 and |s|<<N.  Look at the figures on the first two pages of the accompanying pdf file.  It has 

the form 𝑔𝑔(𝑁𝑁, 𝑠𝑠) ≅ � 2
𝜋𝜋𝜋𝜋

2𝑁𝑁𝑒𝑒−2𝑠𝑠2/𝑁𝑁.  One can show that this approximate version of the multiplicity 



function also correctly counts all of the micro-states by integrating over s as: ∫ � 2
𝜋𝜋𝜋𝜋

2𝑁𝑁𝑒𝑒−2𝑠𝑠2/𝑁𝑁𝑑𝑑𝑑𝑑𝑁𝑁/2
−𝑁𝑁/2 ≅

∫ � 2
𝜋𝜋𝜋𝜋

2𝑁𝑁𝑒𝑒−2𝑠𝑠2/𝑁𝑁𝑑𝑑𝑑𝑑 = 2𝑁𝑁∞
−∞ .  The Gaussian integral is derived in Appendix A on page 439 of K+K. 

The multiplicity distribution becomes more and more strongly peaked as the number of spins N 
increases.  This is illustrated on the third page of the accompanying pdf file.  A plot of g(N,s)/g(N,0) 
versus s/N shows that the Gaussian functions become more and more narrow with increasing N.  This 
means that in the limit of large N, only a very small fraction of all the micro-states have a large and 
significant multiplicity.  We shall see later that these states are the ones that dominate the 
thermodynamic properties of the system.  One can find the 1/e half-width of the g(N,s)/g(N,0) 

distribution as, 𝑠𝑠𝑒𝑒 = ±�𝑁𝑁
2

.  Calculating the fractional width of the distribution, one finds 
𝑠𝑠𝑒𝑒
𝑁𝑁

= 1
√2𝑁𝑁

, which 

diminishes with increasing N, as noted above.  Imagine a macroscopic object with N ~ 1024 spins.  The 
fractional width is 

𝑠𝑠𝑒𝑒
𝑁𝑁

~ 10−12, which is extraordinarily narrow. 


